Главная      Учебники - Экономика     Лекции по экономической теории - часть 2

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  711  712  713   ..

 

 

Решение многокритериальной задачи линейного програмирования

Решение многокритериальной задачи линейного програмирования

Содержание

Введение

Лишь в редких случаях цели, которые лицо принимающее решение (ЛПР) стремится достичь в планируемой им операции, удается описать с помощью одного количественного показателя. Поэтому специалисты Системного анализа и Исследования операций считают целесообразным избегать термина «оптимизация», так как поиск оптимального решения х, доставляющего функции F(x) экстремальное значение, имеет вполне определенный смысл и давно входит в арсенал основных понятий математики. Многообразие целей ЛПР более адекватно может быть описано с помощью некоторой совокупности частных критериев (ч-критериев), характеризующих степень достижения частных целей. Противоречивый характер целей обуславливает, как правило, и противоречивость ч-критериев. С формальной точки зрения это приводит к тому, что свои экстремальные значения ч-критерии получают в различных точках ОДР Dx . Следовательно, ЛПР принимая решение х, всегда должно идти на компромисс, в разумных пределах допуская ухудшение значений одних ч-критериев во имя улучшения значений других. Именно этот этап творческой деятельности ЛПР наименее формализуем и требует привлечения предыдущего опыта, интуиции и даже искусства ЛПР, обладающего практическим опытом в соответствующей предметной области. Решение, принимаемое ЛПР с привлечением совокупности ч-критериев, будем называть компромиссным , рациональным или просто решением ЛПР, избегая при этом термина «оптимальный», имеющего определенный и вполне точный смысл.

Основная идея обоснования и принятия решения ЛПР в условиях многокритериальности состоит в последовательном сужении ОДР Dx до минимальных размеров, что облегчает принятие окончательного решения ЛПР. Первым, наиболее существенным шагом в этом направлении будет являться сужение ОДР Dx до некоторого подмножества Dx p ÌDx на основании принципа доминирования.

1.Общая постановка многокритериальной задачи линейного программирования.

1.1.Формальная постановка многокритериальной задачи линейного программирования.

Формальная схема многокритериальной ЗЛП (МЗЛП) от обычной ЗЛП отличается наличием нескольких целевых функций:

(1)

где ei – неотрицательные переменные (невязки, i = 1; m).
(3)
(2)
Знак max означает тот факт, что желательно увеличение каждой из линейных форм Lr (х), отражающей некоторую r-ю цель ЛРП.

Требование только максимизации не сужает общности задачи. Так, например, требование минимизации затрат некоторых ресурсов эквивалентно требованию максимизации остатка от изначально выделенных ресурсов. Наличие многих ч-критериев позволяет сделать модель (1) – (3) более адекватной изучаемой ситуации, однако выводит её из класса задач МП и требует разработки новых способов ее анализа. Начальный анализ МЗЛП состоит в удалении из области допустимых решений (ОДР) Dх явно худших, доминируемых решений х . Решение х, доминирует решение х (х, > х), если при х, хотя бы один ч-критерий имеет больше значение при равенстве остальных. Поэтому решение х может быть исключено из дальнейшего рассмотрения, как явно худшее, чем х, . Если решение х, не доминируется ни одним из решений х ÎDx , то его называют Паретто-оптимальным ( p - оптимальным) или эффективным решением ( p - решением) . Таким образом, p-решение - это неулучшаемое (недоминируемое) решение, и ясно, что решение ЛПР должно обладать этим свойством – другие решения нет смысла рассматривать.

Формальное определение p -оптимальности решения х, записывается как требование об отсутствии такого решения х Î Dx , при котором бы были выполненыусловия

(4)

и хотя бы одно из них – строго (со знаком >).

Иными словами, условия (4) выражают требование невозможности улучшения решения х, в пределах ОДР Dx ни по одному ч-критерию без ухудшения хотя бы по одному из других.

1.2.Условие задачи

Даны целевые функции:

L1 = -x1 + 2x2 + 2,

L2 = x1 + x2 + 4,

L3 = x1 - 4x2 + 20,

и система ограничений:

x1 + x2 £ 15,

5x1 + x2 ³ 1,

-x1 + x2 £ 5,

x2 £ 20,

"xj ³ 0.

2. Решение многокритериальной задачи линейного программирования графическим методом.

2.1.Формальное условие и сведение к ЗЛП

Чтобы можно было проверить условие (4) (Lr (x) ³Lr (x’),"r) для некоторой произвольно взятой точки х, , не прибегая к попарному сравнению с другими, условие p-оптимальности (4) переформулируем в виде следующей задачи линейного программирования :

(6)
(5)
(7)

Смысл задачи линейного программирования нетрудно понять, если учесть, что dr – это приращение ч-критерия Lr , получаемое при смещении решения х, в точку х. Тогда, если после решения ЗЛП окажется Dmax = 0, то это будет означать, что ни один из ч-критериев нельзя увеличить (Dmax = 0), если не допускать уменьшения любого из других ("dr ³ 0). Но это и есть условие p-оптимальности х, . Если же при решении окажется, что D³ 0, то значит какой-то ч-критерий увеличил свое значение без ухудшения значений других ("dr ³ 0), и значит х, ÏDp x .

Теперь перейдем к решению нашей задачи:

L1 = -x1 + 2x2 + 2,

L2 = x1 + x2 + 4,

L3 = x1 - 4x2 + 20,

x1 + x2 £ 15,

5x1 + x2 ³ 1,

-x1 + x2 £ 5,

x2 £ 20,

"xj ³ 0.

Проверим некоторую точку х, = (5; 3) (эта точка принадлежит области Dx) на предмет p-оптимальности:

Запишем ЗЛП в каноническом виде:

d1 = x1 - 2x2 + 1

Dx k d2 = x1 + x2 - 8

d3 = -x1 + 4x2 - 7

D = x1 + 3x2 – 14,

e1 = 15 - x1 - x2

e2 = 5x1 + x2 – 1,

Dx e3 = 5 + x1 - x2

e4 = 20 - x2

"xj ³ 0.

и в форме с-таблицы:

Т1 х1 х2 1
e1 -1 -1 16
e2 5 1 -4
e3 1 -1 100
e4 0 -1 10
d1 1 -2 -4
d2 1 1 -12
d3 -1 1 -8
D 1 4 -24

Применяя с-метод, после замены d3 « х2 , получаем:

Т2 х1 d1 1
e1 -3/2 ½ 29/2
e2 11/2 -1/2 -1/2
e3 1/2 ½ 9/2
e4 -1/2 ½ 39/2
X2 1/2 -1/2 1/2
d2 3/2 -1/2 -15/2
d3 1 -2 -5
D 5/2 -3/2 -25/2

Видим, что опорный план не получен, следовательно делаем еще одну замену: e1 « х1 :

Т3 e3 d1 1
x1 29/3
e2 316/6
e3 56/6
e4 88/6
x2 16/3
d2 7
d3 14/3
D -5/3 -2/3 70/6

В Т3 получен опорный план. Так как при этом D>0, то, следовательно, система ч-критериев не противоречива и существует некоторая область, смещение в которую решения х, способно увеличить, по крайней мере, один ч-критерий без уменьшения значений остальных. Эта область и есть конус доминирования - д – конусом Dx k (на рисунке выделен штриховкой). При R > n д-конус может выродиться в точку х, (вершина д-конуса). Получено целое множество оптимальных решений, извлекаемое из Т3 : х0 = ( 29/3 ; 16/3 ). Таким образом, решение х, = ( 5; 3) не является p-оптимальным, так как его удалось улучшить (Dmax >0). Помимо установления факта неэффективности решения х, , рассмотренный метод позволил определить ближайшее к нему p-оптимальное решение.

2 .2. Графическое определение p -множества

Сначала необходимо построить график.

Для построения графика необходимы следующие данные:

исходные данные:

L1 = x1 - 2x2 + 2,

L2 = x1 + x2 + 4,

L3 = -x1 + 4x2 - 20,

в каноническом виде (после подстановки точки (5;3))

d1 = x1 - 2x2 + 1, (5 - 2*3 + 1= 1)

Dx k d2 = x1 + x2 - 8, (5 + 3 + 4 = 12)

d3 = -x1 + 4x2 - 7, (-5 + 4*3 - 20 = -13)

D = 2x1 + 4x2 – 14,

Находим точки для построения прямых:

1) d1 = x1 - 2x2 + 1,

-x1 + 2x2 £ 1 (1;1)

2) d2 = x1 + x2 - 8,

x1 + x2 ³8 (0;8)

3) d3 = -x1 + 4x2 - 7,

-x1 + 4x2 ³7 (1;2)

По полученным точкам строим график (рисунок 1). На рисунке штриховкой показан полученный д-конус. Переход к любой точке внутри конуса обеспечивает увеличение всех критериев. Точка (29/3; 16/3) является p-оптимальным решением. Смещая точку х, внутрь д-конуса придем на границу e1 . При этом д-конус выйдет из области допустимых решений (ОДР) Dx . Теперь полученная точка не сможет улучшить ни один ч-критерий без ухудшения других, значит она p-оптимальная. Построив д-конус в любой точке стороны e1 , убеждаемся, что каждая из точек p-оптимальна, значит вся сторона e1 составляет p-множество.


3.Определение Парето-оптимального множества

с-методом

3.1.Удаление пассивных ограничений

Перед построением p-множества из системы ограничений должны быть удалены пассивные ограничения. Пассивным будем называть неравенство (п-неравенство), граница которого не является частью границ области Dx , за исключением, может быть, ее отдельной точки. Неравенства, образующие границы Dx , назовем активными (а-неравенства).

Чтобы грани не были включены в Dx p , не имея никакого отношения к Dx p , неравенство e1 должно быть удалено из исходной системы ограничений. Условием для исключения неравенства ei ³ 0 из системы является несовместность (или вырожденность) данной системы неравенств при условии ei = 0. Геометрически это означает, что граница ei = 0 неравенства ei ³ 0 не пересекается с областью Dx или имеет одну общую точку. Если граница ei = 0 имеет общую угловую точку с Dx (вырожденность), то с удалением п-неравенства ei ³ 0 эта точка не будет утеряна, так как она входит в границы других неравенств. Помимо заданных m неравенств проверке подлежат и n условий неотрицательности переменных, так как координатные плоскости (оси) также могут входить в границы Dx .

В качестве примечания можно отметить, что поскольку п-неравенства (пассивные неравенства) для любой точки xÎDx будут выполнены, то по мере выявления п-неравенств и введения их в базис они удаляются из с-таблицы.

Запишем систему неравенств Dx в форме с-таблицы:

Т1 х1 х2 1 bi /ais bi /ais
e1 -1 -1 15 15 15
e2 5 1 -1 1/5 1
e3 1 -1 5 - 5
e4 0 -1 20 - 20
Т2 e1 x2 1 Т2 x1 e2 1
х1 -1 -1 15 e1 4 -1 14
e2 -5 -4 74 x2 -5 1 1
e3 -1 -2 20 e3 2 -1 4
e4 0 -1 20 e4 1 -1 19

ОП – получен, следовательно ОП – получен, следовательно

х2 и e1 – активные ограничения; x1 и e2 – активные ограничения;

из Т2 получаем:

Т3 e1 e3 1
x1 1 1/2 5
e2 -3 2 34
x2 -1/2 -1/2 10
e4 2 ½ 10

отсюда делаем вывод, что e3 – активное ограничение;

из Т3 получаем:

Т4 e4 e3 1
x1 10
e2 19
x2 15/2
e1 -5

Опорный план не получен, следовательно e4 – пассивное ограничение.


3.2 .Определение p -множества с-методом.

При подготовке решения для ЛПР интерес будет представлять информация обо всем множестве p-оптимальных (эффективных) решений Dx p . Графический метод позволяет сформулировать довольно простой подход к определению множества Dx p . Суть этого подхода в следующем. Решая усеченную задачу линейного программирования, устанавливаем факт существования д-конуса ( Dmax > 0). Поскольку для линейных ЦФ конфигурация д-конуса не зависит от положения его вершины х, , то, помещая ее на границу ei области Dx , решаем усеченную ЗЛП с добавлением ei , соответствующего i-му участку границ Dx . Вырождение д-конуса в точку х, будет признаком p-оптимальности и всех других точек данной грани. С помощью с-метода указанная процедура легко проделывается для пространства любой размерности n. Неудобство указанного метода состоит в том, что потребуется на каждой грани ОДР Dx найти точку х, (по числу граней Dx ) сформулировать и решить столько же ЗЛП размера R xn .

Существенно сократить объем вычислений можно путем выбора вершины д-конуса в фиксированной точке х, = (1)n и в нее же параллельно себе перенести грани, составляющие границы Dx

Приведенные к точке х, = (1)n приращения d- r и невязки ei запишутся в виде:

(8)

где черта сверху у d, e и D означает, что эти величины приведены к точке х, = (1)n .

По существу, (8) – ЗЛП размера (R+m)xn (D®max), аее решение позволит найти все грани, составляющие p-множество Dx p .

Составляем с-таблицу, не учитывая пассивные ограничения, т.е e1 :


Т1 х1 х2 1
e2 -1 -1 2
e3 5 1 -6
e4 1 -1 0
х1 1 0 -1
х2 0 1 -1
d1 1 -2 1
d2 1 1 -2
d3 -1 4 -3
D 1 3 -4

В начале решается усеченная ЗЛП (под чертой):

Т2 х1 d1 1
e1 -3/2 1/2 3/2
e2 11/2 -1/2 -11/2
e3 1/2 1/2 -1/2
х1 1 0 -1
х2 1/2 -1/2 -1/2
x2 1/2 -1/2 1/2
d2 3/2 -1/2 -3/2
d3 1 -2 -1
D 5/2 -3/2 -5/2
Т3 d3 d1 1
e1 -3/2 -5/2 0
e2 11/2 21/2 0
e3 1/2 3/2 0
х1 1 2 0
х2 1/2 1/2 0
x2 1/2 1/2 1
d2 3/2 5/2 0
x1 1 2 1
D 5/2 7/2 0
Т4 e1 d1 1
d3 0
x2 1
d2 0
x1 1
D -5/3 -2/3 0

e1 ÎDx p , так как Dmax = 0.

Данный метод построения множества Dx p обладает недостатком, связанным с разрушением области допустимых решений (ОДР) Dx при переносе ее граней в х, . Действительно, вершины области Dx в преобразованной модели никак не отражены, а именно одна из них может составить p-множество в случае его совпадения с оптимальным решением. Такое совпадение возможно, если все ч-критерии достигают максимум на одной вершине. Физически это значит, что они слабопротиворечивы – угол при вершине д-конуса приближается к 180° (градиенты ч-критериев имеют практически совпадающие направления). Данный случай имеет место, если в p-множество не вошла ни одна из граней ОДР Dx . Следовательно, p-множество совпадает с оптимальным решением. Для определения p-множества решается обычная ЗЛП с одним из ч-критериев. Если при этом получено множество оптимальных решений, то решается ЗЛП с другим ч-критерием. Пересечение оптимальных решений и является p-множеством. Для ЛПР указание на то, что некоторая грань ei = ei p ÎDx p p-оптимальна, является только обобщенной информацией.

4.Определение альтернативных вариантов многокритериальной задачи

Наиболее естественным и разумным решением мк-задачи было бы органическое объединение всех ч-критериев в виде единой ЦФ. Иногда это удается сделать путем создания более общей модели, в которой ч-критерии являются аргументами более общей целевой функции, объединяющей в себе все частные цели операции. На практике этого редко удается достигнуть, что, собственно, и является основной причиной появления проблемы многокритериальности. Однако наиболее распространенный подход к решению проблемы пока остается все-таки один: тем или иным путем свести решение мк-задачи к решению однокритериальной задачи. В основе подхода лежит предположение о существовании некой функции полезности , объединяющей в себе ч-критерии, но которую в явном виде, как правило, получить не удается. Получение наиболее обоснованной «свертки» ч-критериев является предметом исследований нового научного направления, возникшего в связи с проблемой многокритериальности - теории полезности . В данной работе будут рассмотрены некоторые подходы, позволяющие получить варианты решения мк-задач при тех или иных посылках и которые лицо принимающее решение (ЛПР) должно рассматривать как альтернативные при принятии окончательного решения и которые, конечно, должны удовлетворять необходимому условию- p-оптимальности.

4.1.Метод гарантированного результата

При любом произвольном решении х ÎDx каждый из ч-критериев примет определенное значение и среди них найдется, по крайней мере, один, значение которого будет наименьшим :

(9)

Метод гарантированного результата (ГР) позволяет найти такое (гарантированное) решение, при котором значение «наименьшего» критерия станет максимальным. Таким образом, целевая функция (ЦФ) является некоторой сверткой ч-критериев (9), а МЗЛП сводится к задаче КВП (кусочно-выпуклого программирования) при ОДР Dx , заданной линейными ограничениями.

Исходные условия записываем в каноническом виде:

d1 = х1 - 2х2 - j + 2,

d2 = х1 + х2 - j + 4,

d3 = -х1 + 4х2 - j + 20,

e1 = -х1 - х2 + 15,

e2 = 5х1 + х2 - 1,

e3 = x1 - х2 + 5,

потом в виде с-таблицы:

Т1 х1 х2 j 1
e1 -1 -1 0 15
e2 5 1 0 -1
e3 1 -1 0 5
d1 1 -2 -1 2
d2 1 1 -1 4
d3 -1 4 -1 20

Вводя в базис переменную j (d1 «j), получаем обычную ЗЛП при максимизации ЦФ j.

Т2 х1 х2 d1 1
e1 -1 -1 0 15
e2 5 1 0 -1
e3 1 -1 0 5
j 1 -2 -1 2
d2 0 3 1 2
d3 -2 6 1 18
Т3 d3 x2 d1 1 bi /ais
e1 1/2 -4 -1/2 6 6/4
e2 -5/2 16 5/2 44 -
e3 -1/2 2 2 14 -
j -1/2 1 -1/2 11 -
d2 0 3 -1 2 -
х1 -1/2 3 1/2 9 -
Т4 d3 e1 d1 1
x2 3/2
e2 68
e3 17
j -3/8 -1/4 -5/8 25/2
d2 13/2
х1 27/2

Решение ЗЛП приводит к конечной с-таблице Т4 . Видно, что полученное гарантированное решение х p-оптимально, поскольку введение в базис любой свободной переменной (т.е. ее увеличение) приведет к снижению j - нижнего уровня ч-критериев ("сj < 0). Из таблицы также видно, что решение х0 =(27/2; 3/2) находится на грани e4 , при этом значения ч-критериев равны (находим по формуле Lr ( xr ) = j + d r ):

L1 = L3 =j = 25/2

L2 = j + d2 = 25/2 + 13/2 = 19

LS = 88/2 = 44

x° = ( 27/2; 3/2)

Если бы в строке j имелись нули, то это означало бы, что одну из соответствующих переменных можно ввести в базис (увеличить без снижения уровня j). Это могло бы привести и к увеличению приращения dr для некоторого ч-критерия, находящегося в базисе.

4.2.Метод линейной свертки частных критериев

Линейная свертка ч-критериев получается как х сумма с некоторыми весовыми коэффициентами mr :

(9)

где

(10)

Меняя порядок суммирования и вводя обозначения cj и c0 , окончательно получим:

(11)

Коэффициенты веса обычно получаются путем опроса экспертов из соответствующей предметной области. Поскольку вектор m = (mr ) – суть вектор-градиент ЦФ Lm (x), то предполагается, что он указывает направление к экстремуму неизвестной функции полезности . Положительная сторона такого подхода – несложность, не всегда компенсирует его серьезный недостаток – потерю физического смысла линейной свертки разнородных ч-критериев. Это затрудняет интерпретацию результатов, поэтому полученное таким путем решение, следует рассматривать только как возможный (альтернативный) вариант решения ЛПР. Для его сравнительного анализа следует привлекать любые другие варианты и, конечно, значения ч-критериев, получаемые при этом. Иногда при получении свертки ч-критериев предварительно нормируются каким-нибудь способом.

Наиболее приемлемой линейная свертка ч-критериев может оказаться в том случае, когда ч-критерии однородны и имеют единый эквивалент, согласующий их наиболее естественным образом.

На содержательном уровне данная МЗЛП состоит в необходимости принятия такого компромиссного решения (плана выпуска продукции) xk ÎDx , которое обеспечит, по возможности, наибольшую суммарную выручку L1 (x) от реализации произведенной продукции; наименьший расход ресурсов i -го вида Lpl (x) (i = 1; m); минимальные налоговые отчисления от прибыли LH (x) (или общей выручки).

Указанные цели носят противоречивый характер, и фактически мы имеем МЗЛП с m+2 –мя ч-критериями (m – количество видов потребляемых ресурсов). ОДР обусловлена ресурсными ограничениями и условиями неотрицательных переменных:

где aij – расход ресурса i-го вида для выпуска 1 единицы продукции j-го вида (j=1,n);

bi – запас ресурса i-го вида;

ei – остаток ресурса i-го вида при плане выпуска x = (xj )n . Ч-критерии однородны, если они могут быть сведены к единой мере измерения . В качестве такой меры можно взять денежный эквивалент. Тогда m+2 ч-критерия могут быть с помощью линейной свертки сведены к трем:

общая выручка (руб.):

общая экономия ресурсов (руб.):

налоговые отчисления (руб.):

где cj – выручка от реализации 1 ед. продукции j-го вида (цена); si – стоимость (цена) 1 ед. ресурса i-го вида (i = 1;m); Пj – прибыль от реализации 1 ед. продукции j-го вида (j = 1;n); aj – доля (процент налоговых отчислений от прибыли (выручки).

В заключение заметим, что коэффициенты mr не обязательно должны удовлетворять условию (10),но обязательно должны быть положительными, если все ч-критерии максимизируются.

Перейдем к решению:

Т1 х1 х2 1
e1 -1 -1 15
e2 5 1 -1
e3 1 -1 5
L1 1 -2 2
L2 1 1 4
L3 -1 4 20
LS 1 3 26
Т2 e1 x2 1
x1 -1 -1 15
e2 -5 -4 74
e3 -1 -2 20
L1 -1 -1 17
L2 -1 0 19
L3 1 5 5
LS -1 2 41

L1 max = 17

L2 max = 19

L3 = 5

LS = 41

Т3 e1 L1 1
x1 28/3
e2 154/3
e3 26/3
x2 17/3
L2 19
L3 -2/3 -5/3 100/3
LS -5/3 -2/3 157/3

5. Составление сводной таблицы.

Окончательное решение сводится в таблицу, где записываются альтернативные варианты:

Метод х0 L1 L2 L3 LS
Метод гарантированного результата

(27/2 ; 3/2)

25/2

19

25/2

44

Метод свертки (28/3;17/3) 0 19 33 1/3 52 1/3
Оптимизация L1 (15;0) 1 7 19 5 41

Оптимизация

L2 , L3

(28/3;17/3) 0 19 33 1/3 52 1/3
xÏDx p (5;3) 1 12 -13 0