Главная      Учебники - Менеджмент     Лекции по менеджменту - часть 10

 

поиск по сайту            

 

 

 

 

 

 

 

 

 

содержание   ..  159  160  161   ..

 

 

Методы и модели подготовки принятия решений

Методы и модели подготовки принятия решений

Современная Гуманитарная Академия

Классификация методов и приемов анализа, область их применения

Результаты экспертной оценки

Средняя оценка определяется делением суммы баллов на количество экспертов. По средним оценкам рассчитывается весомость параметров (см. табл. 1.4).

Таблица 1.4.

Весомость параметров (а)

В табл. 1.4. значения соотношений параметров, которые отсутствуют в табл. 1.3. определены путем вычитания из второго значения обратного соотношения из табл. 1.4. Например, в табл. 1.3. отсутствует соотношение параметров Х2 и Х1, имеется соотношение обратное X1 и Х2, равное 1,2. Тогда соотношение Х2 и X1 будет обратно и равно 0,8 (2 - 1,2). Весомость параметров определяется экспертным методом по объектам, характеризующимся несколькими важнейшими параметрами разной размерности. Для того чтобы сложить (условно) подобные параметры и определить полезный эффект и элементы затрат по объекту, рекомендуется применять систему баллов.

Система баллов строится следующим образом. Допустим, что установленные в табл. 1.4 весомости параметров характерны для группы приборов одного назначения: X1 — количество измеряемых параметров, Х2 — точность измерений, %, Х3 — пределы измерений основного параметра, Х4 — количество измерений в единицу времени. Максимальные значения параметров для данной группы приборов следующие: X1—4, Х2—± 5%, Х3—100 и Х4—6 измерений в минуту. По этим значениям параметров и их весомости (см. табл. 1.4) строится система баллов для прогнозирования полезного эффекта новых приборов данного класса (рис. 1.10).

Рис. 1.10. Система баллов (условная) для прогнозирования полезного эффекта приборов

При построении данной системы баллов для упрощения принято, что зависимость между параметрами и полезным эффектом или элементами затрат прямо пропорциональная (линейная). При необходимости уточнения системы баллов можно построить и криволинейные зависимости.

По параметру Х2 на схеме 1.10. показана обратная зависимость, т.е. с уменьшением величины, характеризующей точность измерений, полезный эффект прибора повышается. Данный класс приборов имеет точность измерений от ±1 до ±5%. Следовательно, приборам, имеющим самую высокую точность, равную ±1%, присваивается максимальное количество баллов – 4,2, а приборам, имеющим минимальную точность (±5%), баллы не присваиваются. С увеличением значений остальных параметров полезный эффект прибора увеличивается. Поэтому приборам, имеющим нулевое значение параметров Х1 Х2 и Х3, баллы не присваиваются.

Для прогнозирования или расчета полезного эффекта и каждого элемента затрат по каждому классу объектов одного назначения строится своя система баллов, так как на полезный эффект и элементы затрат влияют свои факторы или параметры.

Таким образом, с применением экспертных методов несколько параметров объекта приводятся к единой размерности. Пользуясь бальной оценкой совокупности параметров объектов, аналогично методу удельных показателей, можно рассчитать элементы затрат по новому объекту.

Экспертные методы могут применяться не только для прогнозирования полезного эффекта или элементов затрат по объекту, но и для оценки полезного эффекта (технического уровня) серийно выпускаемого объекта, характеризующегося несколькими основными функциями.

Организация работ по прогнозированию представляет собой комплекс взаимосвязанных мероприятий, направленных на создание условий для прогнозирования полезного эффекта и элементов совокупных затрат по продукции машиностроения с целью подготовки информации для принятия оперативных и стратегических решений.

Принципы организации работ по прогнозированию: адресность, сбалансированность, параллельность, непрерывность, прямоточность, адекватность, управляемость, альтернативность, адаптивность.

Принцип адресности состоит в выполнении прогнозов для строго определенной научно-исследовательской или проектно-конструкторской организации, а также предприятия-изготовителя объекта.

Принцип параллельности проведения работ по прогнозированию различными службами используется для сокращения времени сбора и обработки исходной информации и выполнения самого прогноза.

Принцип непрерывности состоит в систематическом сборе и обработке поступающей дополнительной информации после выполнения прогноза и внесения необходимых корректив в прогноз по мере необходимости.

Принцип прямоточности предусматривает строго целесообразную передачу информации от одного исполнителя к другому по кратчайшему пути.

Принцип автоматичности является одним из основных для сокращения времени и затрат на сбор и обработку исходных данных и выполнение прогнозирования.

Принцип адекватности помогает точнее оценить вероятность реализации выявленной тенденции изменения полезного эффекта и затрат на его получение. Для использования принципа управляемости необходимо применять количественные оценки показателей качества и затрат, экономико-математические методы и модели управления.

Принцип альтернативности прогнозирования связан с возможностью развития объекта, отдельных его компонентов и технологии изготовления изделия по разным траекториям, с различными затратами в зависимости от использования тех или иных принципов, закладываемых в конструкцию или технологию. Вероятностный характер прогнозирования отражает наличие случайных процессов и отклонений при сохранении устойчивости прогнозируемых тенденций. На формирование альтернатив влияют конкретные цели удовлетворения определенных потребностей потребителя и сокращение затрат на достижение этих целей.

Принцип адаптивности прогнозирования заключается в изучении и максимальном использовании факторов внешней и внутренней среды объекта как системы, в приспособлении методов и параметров прогнозирования к этим факторам, к конкретной ситуации.

1.4. Моделирование

Моделирование основывается на принципе аналогии, т.е. возможности изучения объекта (по каким-то причинам труднодоступного для исследования) не непосредственно, а через рассмотрение другого, подобного ему и более доступного объекта, его модели.

Модель – логическое или математическое описание компонентов и функций, отображающих существенные свойства моделируемого объекта или процесса (обычно рассматриваемых как системы или элементы систем). Модель в практике подготовки и принятия управленческого решения— условный образ объекта управления.

Адаптивные модели – изменяются в процессе решения задачи, в зависимости от поступающей информации о возможных результатах альтернатив решения.

Дескриптивные модели – предназначены для описания объяснения наблюдаемых фактов или прогноза поведения объектов.

Нормативные модели – предназначены для нахождения желательного (например, оптимального) состояния объекта.

Концептуальные модели – приближенное представление о рассматриваемом объекте или процессе, фиксирующее наиболее существенные параметры и связи между ними.

Физические модели – представляют собой пропорционально уменьшенные в 10 и более раз и изготовленные из различных материалов (металл, дерево, пенопласт, пластилин и др.) натуральные объекты. Они изготавливаются в уменьшенном виде с целью экономии материалов для проверки аэродинамических, эстетических, компоновочных и других характеристик объекта.

Логическое моделирование – выявление горизонтальных и вертикальных причинно-следственных связей между главными факторами, характеризующими управленческие, экономические, социальные или другие процессы, с целью воспроизведения процессов при анализе, прогнозировании и оценке параметров объектов. Пример логического моделирования приведен на рис. 1.11. (диаграмма Исикавы).

Рис. 1.11. Пример логического моделирования

На логической модели анализов факторов снижения качества продукции (схема 1.12.) взято только два уровня моделирования: на 1-м уровне — машины, человек, материалы, методы; на 2-ом уровне — факторы, влияющие на 1-й уровень. Подобные модели могут иметь больше уровней и ориентированы на любой (положительный — улучшение или отрицательный — снижение, ухудшение) результат.

Примером другой логической модели является операционная модель или блок-схема.

Экономико-математическое моделирование представляет собой процесс выражения экономических явлений математическими моделями. Экономико-математическая модель — это схематичное представление экономического явления или процесса с использованием научной абстракции, отражение их характерных черт. Математические модели — основное средство решения задач оптимизации любой деятельности. По своей сути эти модели — средство плановых расчетов.

Отметим принципиальные черты, характерные для процесса построения экономико-математической модели любого вида, их можно условно подразделитьна три этапа:

1) анализ теоретических закономерностей, свойственных изучаемому явлению или процессу и эмпирических данных о его структуре и особенностях; на основе такого анализа формируются модели;

2) определение методов, с помощью которых можно решить задачу;

3) анализ полученных результатов.

Важнейшим моментом первого этапа моделирования является четкая формулировка конечной цели построения модели, а также определение критерия, по которому будут сравниваться различные варианты решения. Такими критериями в системе менеджмента могут быть:

а) максимизация полезного эффекта товара при ограничении совокупности затрат;

б) максимизация прибыли фирмы при условии, что качество товара не снизится;

в) снижение себестоимости товара при условии, что его качество не снизится, а затраты у потребителя не увеличатся;

г) рост производительности труда, улучшение использования оборудования или материалов, повышение оборачиваемости оборотных средств при условии, что качество товара не снизится и другие критерии не ухудшатся.

Таким образом, в качестве критерия оптимизации может быть целое или любой компонент прибыли, эффективности товара, объема рынка при условии, что другие компоненты при этом не ухудшатся.

Например, уравнение целевой функции (L) и система ограничений по оптимизации прибыли фирмы (правда, у авторов нет ограничений по качеству товара) будет иметь следующий вид:

где: хj — количество производимой продукции j-го вида в натуральных измерениях;

Пj — прибыль, получаемая от производства единицы продукции j-го вида;

aij — норма расхода 1-го производственного ресурса на производство единицы j-го вида продукции;

w — запасы i-го вида производственного ресурса на рассматриваемый период времени.

Вторым этапом моделирования экономических процессов является выбор наиболее рационального математического метода для решения задачи.

Третий этап моделирования – всесторонний анализ результата, полученного при изучении экономического явления.

Кибернетическое моделирование - применение общих законов кибернетики к моделированию и оптимальному управлению сложными динамическими системами независимо от их природы и сущности.

1.5. Технология принятия управленческого решения

Понятие“технология принятия решения” включает ответы на следующие вопросы:

– Что делать (количество и качество объекта)?

– С какими затратами (ресурсы)?

– Как делать (по какой технологии)?

– Кому делать (исполнители)?

– Когда делать (сроки)?

– Для кого делать (потребители)?

– Где делать (место)?

– Что это дает (экономический, социальный, экологический, технический эффект)?

Если вы ответили на все вопросы количественно и увязали элементы в пространстве, во времени, по ресурсам и исполнителям, значит вы разработали технологию принятия решения. При этом обязательно нужно учесть требования и применить методы, рассмотренные ранее..

Этапы процесса принятия решения:

1) выявление управленческой проблемы или задачи;

2) предварительная постановка цели;

3) сбор необходимой информации;

4) анализ информации;

5) определение исходных характеристик проблемы с учетом накладывания ограничений;

6) уточнение цели и критерия управления, их окончательная формулировка;

7) обоснование и построение формализованной модели проблемной ситуации;

8) разработка альтернативных вариантов решения проблемы;

9) выбор метода решения;

10) экономическое обоснование выбранного решения;

11) согласование решения с органами управления и исполнителями;

12) окончательное оформление и утверждение решения;

13) организация выполнения решения;

14) контроль выполнения решения;

15) стимулирование повышения качества работ, экономии ресурсов и соблюдения сроков;

16) установление обратной связи с лицом, принимающим решение, и при необходимости, корректировка цели и задач.

Процесс разработки управленческого решения относится к разряду управленческих процессов. Аналогично производственным процессам подразделяютсяна основные, вспомогательные и обслуживающие. Только здесь в качестве предмета труда выступает управленческое решение, информация, нормативно-технический и управленческий документ. Если операция направлена на изменение любого параметра управленческого предмета труда, то этот процесс будет основным . К обслуживающим управленческим процессам относятся процессы по накоплению, контролю и передаче предмета труда. К вспомогательным — все те, которые создают нормальные условия для протекания основных и обслуживающих процессов: изготовление, приобретение или ремонт средств технического оснащения и т.п.

Основными принципами рациональной организации любых процессов являются пропорциональность, непрерывность, параллельность, прямоточность, ритмичность, а также концентрация однородных предметов труда (деталей, информации, документов т.п.) в одном месте, гибкость процесса. Рассмотрим эти принципы подробнее.

Пропорциональность — принцип, выполнение которого обеспечивает равную пропускную способность разных рабочих мест одного процесса, пропорциональное обеспечение рабочих местинформацией, материальными ресурсами, кадрами и т.д.

О принципе пропорциональности следует помнить при решении любых вопросов, т.к. “скорость эскадры определяется скоростью самого тихоходного судна”.

Пропорциональность определяется по формуле:

где: Мmin — минимальная пропускная способность или пари метр рабочего места в технологической цепи (например, мощность, разряд работ, объем и качество информации и т.п.);

Мmax — максимальная способность.

Непрерывность — принцип рациональной организации процессов определяется отношением рабочего времени к общей продолжительности процесса:

где: Траб — продолжительность рабочего времени;

Тц — общая продолжительность процесса, включающая простои или пролеживание предмета труда между рабочими местами, на рабочих местах и т.п.

Параллельность — принцип рациональной организации процессов, характеризующий степень совмещения операций во времени. Виды сочетаний операций: последовательное, параллельное и параллельно-последовательное.

Коэффициент параллельности рекомендуется определять формуле:

Прямоточность — принцип рациональной организации процессов, характеризующий оптимальность пути прохождения предмета труда, информации и т.п.

Коэффициент прямоточности рекомендуется определять по формуле:

где: Допт - оптимальная длина пути прохождения предмета труда, исключающего лишние звенья, возвраты на прежнее место;

Дфакт — фактическая длина пути прохождения предмета труда.

Ритмичность — принцип рациональной организации процессов, характеризующий равномерность их выполнения во времени. Коэффициент ритмичности рекомендуется определять по формуле:

где Viф — фактический объем выполненной работы за анализируемый период (декада, месяц, квартал) в пределах плана (свыше плана не учитывается); Viп — плановый объем работ.

Для оптимизации продолжительности этапов (операций) и распределения ресурсов, а также для обеспечения ее наглядности рекомендуется применять сетевые методы . Для “увязки” работ и исполнителей рекомендуется строить оперограммы. Применение оперограмм позволит обеспечить наглядность взаимосвязей работ и исполнителей.

Сетевое планирование и управление (СПУ) — графоаналитический метод управления процессами создания (проектирования) любых систем.

Сетевой график — это полная графическая модель комплекса работ, направленных на выполнение единого задания, в которой (модели) определяется логическая взаимосвязь, последовательность работ и взаимосвязь между ними.

Основными элементами сетевого графика являются работа (изображается стрелкой) и событие (изображается кружком).

На рис. 1.12 приведен пример сетевого графика комплекса работ по маркетингу на первой стадии жизненного цикла товара.

Рис. 1.12. Сетевой график комплекса работ по маркетингу на первой стадии жизненного цикла товара

1.6. Диалоговые компьютерные системы и технологии интеллектуальной поддержки УР

В настоящее время ЭВМ находят широкое применение во многих областях человеческой деятельности, в том числе и при принятии решений. Самым естественным образом на их долю выпадает выполнение таких функций, как хранение и обработка большого количества информации, выполнение трудоемких расчетов при решении оптимизационных задач, наглядного представления информации и т.д.

Особый интерес, с точки зрения практики принятия решений, представляют случаи, когда:

интересующие лиц, принимающих решения (ЛПР), экономические процессы практически не допускают прямых натуральных экспериментов;

– имеется лишь частичная формализация проблемы, то есть имеется качественное, а не количественное описание какой-то части проблемы;

– решение вырабатывается в результате неоднократного взаимодействия ЛПР и ЭВМ.

Между ЛПР и ЭВМ осуществляется диалог в реальном масштабе времени с непосредственным и оперативным обменом сообщениями в удобной для пользователя форме. ЭВМ по заданной программе имитирует, воспроизводит течение изучаемого процесса при нескольких вариантах управления, задаваемых ЛПР, который анализирует и оценивает полученные результаты. При этом ЛПР явно или неявно оценивает результаты по многим критериям, и постепенно, после нескольких попыток, определяет, в какой степени область возможных решений допускает одновременное улучшение по многим критериям. В итоге ЛПР приходит к разумному компромиссу в значениях различных критериев. Такой способ формирования решения обычно называютимитационным моделированием.

Как правило, имитационные модели сложны, большого размера, в них много внешних переменных, (то есть переменных, значения которых задаются извне, а не исследователем). В таких моделях могут рассматриваться сразу несколько аспектов проблемы (экологические, демографические, производственные, транспортные и т.д.), могут быть блоки решений каких-то оптимизационных задач, необходимые для модели базы данных, какие-то дополнительные возможности.

Важнейшим этапом принятия управленческого решения является организация технологического процесса переработки информации с помощью новых информационных технологий (НИТ).

Новые информационные технологии включают:

– новые технологии коммуникаций на основе локальных и распределительных сетей ЭВМ;

– новые технологии обработки информации на основе персональных компьютеров (ПЭВМ) и специализированных рабочих мест;

– технологии, исключающие бумагу как основной носитель информации;

– новые технологии принятия решений на основе средств искусственного интеллекта – баз знаний, экспертных систем, систем моделирования с различными формами представления моделируемых ситуаций и т.п.

Внедрение новых информационных технологий в управленческую деятельность преследует не только автоматизацию рутинных методов обработки информации, но и организацию информационно-коммуникативного процесса на качественно новом уровне. О широких возможностях новых информационных технологий можно судить по перечню функций, которые обеспечиваются в результате ее внедрения (см. табл. 1.5.).

Таблица 1.5.

Функции новых информационных технологий

Составляющим элементом технологии принятия и реализации управленческого решения являютсятехнические средства управления, в том числе:

– средства сбора, хранения и передачи информации (картотеки, микрофильмы, электронная, телефонная и др. связь);

– средства обработки информации (компьютеры, дисплеи, графопостроители, микрокалькуляторы и т.п.);

– средства выдачи отображения информации (световое табло, звуковые сигналы и т.п.);

– средства копирования и размножения документов;

– средства для составления документов;

– средства для обработки документов.

Важнейшим условием совершенствования технологий принятия и реализации решений являетсяавтоматизация этого процесса на основе компьютерной техники и автоматизированных систем (АС) управления предприятиями (АСУП), управления качеством продукции (АСУКП), управления научно-исследовательскими и опытно-конструкторскими работами (АСУ НИОКР), управления технологической подготовкой производства (АСУ ТПП), системы автоматизированного проектирования (САПР), государственной системы информации (ГСИ) и др.

ЛИТЕРАТУРА

Базовая

*1. Фатхутдинов Р.А. Разработка управленческого решения, М., 1999.

или

*2. Фатхутдинов Р.А. Система менеджмента, М., 1997.

Дополнительная

*3. Артеменко В. Г., Беллендир М.В. Финансовый анализ. М., 1997.

*4. Баканов М.И. Шеремет А.Д. Теория экономического анализа. М., 1996.

5. Балабанов И.Т. Основы финансового менеджмента. М., 1998.

6. Бланк И.А. Основы финансового менеджмента. Киев, 1999.

7. Веснин. В. Р. Основы менеджмента. М., 1996.

*8. Глушенко В.В., Глушенко И.И. Разработка управленческого решения. г. Железнодорожный, 1997.

*9. Ковалев В.В. Финансовый анализ. Управление капиталом. Выбор инвестиций. М., 1998.

*10. Трояновский В.М. Математическое моделирование в менеджменте. М., 1999.

11. Фатхутдинов Р.А. Понятийный аппарат по менеджменту. М., 1997.

*12. Финансовый менеджмент / Под ред. Е.С. Стояновой, М., 1999.

 

 

 

 

 

 

 

содержание   ..  159  160  161   ..